当前位置: 首页 > 数据结构&&算法 > 正文

数据结构小结(九)排序算法大杂烩

冒泡排序

冒泡排序(Bubble Sort),是一种计算机科学领域的较简单的排序算法。 它重复地走访过要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。走访数列的工作是重复地进行直到没有再需要交换,也就是说该数列已经排序完成。 这个算法的名字由来是因为越大的元素会经由交换慢慢“浮”到数列的顶端,故名。

冒泡排序运作

冒泡排序算法的运作如下:(从后往前) 1.比较相邻的元素。如果第一个比第二个大,就交换他们两个。 2.对每一对相邻元素作同样的工作,从开始第一对到结尾的最后一对。在这一点,最后的元素应该会是最大的数。 3.针对所有的元素重复以上的步骤,除了最后一个。 4.持续每次对越来越少的元素重复上面的步骤,直到没有任何一对数字需要比较。

排序代码

 

 

 

插入排序

图解

insert

简单实现

 

选择排序

选择排序(Selection sort)是一种简单直观的排序算法。它的工作原理是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,直到全部待排序的数据元素排完。

时间复杂度,及稳定度分析

选择排序的交换操作介于 0 和 (n – 1) 次之间。选择排序的比较操作为 n (n – 1) / 2 次之间。选择排序的赋值操作介于 0 和 3 (n – 1) 次之间。

paixu

选择排序是一个不稳定的排序算法。

折半插入排序

具体操作

在将一个新元素插入已排好序的数组的过程中,寻找插入点时,将待插入区域的首元素设置为a[low],末元素设置为a[high],则轮比较时将待插入元素与a[m],其中m=(low+high)/2相比较,如果比参考元素小,则选择a[low]到a[m-1]为新的插入区域(即high=m-1),否则选择a[m+1]到a[high]为新的插入区域(即low=m+1),如此直至low<=high不成立,即将此位置之后所有元素后移一位,并将新元素插入a[high+1]。

稳定性与复杂度

折半插入排序算法是一种稳定的排序算法,比直接插入算法明显减少了关键字之间比较的次数,因此速度比直接插入排序算法快,但记录移动的次数没有变,所以折半插入排序算法的时间复杂度仍然为O(n^2),与直接插入排序算法相同。附加空间O(1)。

折半查找只是减少了比较次数,但是元素的移动次数不变,所以时间复杂度为O(n^2)是正确的!

归并排序

时间复杂度: O(nlog2N)

空间复杂度: 只需要一个空间O(N)

稳定性:稳定排序

merage

快速排序

快速排序(Quicksort)是对冒泡排序的一种改进。 快速排序由C. A. R. Hoare在1962年提出。它的基本思想是:通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另外一部分的所有数据都要小,然后再按此方法对这两部分数据分别进行快速排序,整个排序过程可以递归进行,以此达到整个数据变成有序序列。

设要排序的数组是A[0]……A[N-1],首先任意选取一个数据(通常选用数组的第一个数)作为关键数据,然后将所有比它小的数都放到它前面,所有比它大的数都放到它后面,这个过程称为一趟快速排序。值得注意的是,快速排序不是一种稳定的排序算法,也就是说,多个相同的值的相对位置也许会在算法结束时产生变动。

一趟快速排序的算法是:

(1)设置两个变量i、j,排序开始的时候:i=0,j=N-1;

(2)以第一个数组元素作为关键数据,赋值给key,即key=A[0];

(3)从j开始向前搜索,即由后开始向前搜索(j–),找到第一个小于key的值A[j],将A[j]和A[i]互换;

(4)从i开始向后搜索,即由前开始向后搜索(i++),找到第一个大于key的A[i],将A[i]和A[j]互换;

(5)重复第3、4步,直到i=j; (3,4步中,没找到符合条件的值,即3中A[j]不小于key,4中A[i]不大于key的时候改变j、i的值,使得j=j-1,i=i+1,直至找到为止。找到符合条件的值,进行交换的时候i, j指针位置不变。另外,i==j这一过程一定正好是i+或j-完成的时候,此时令循环结束)。

quick

代码实现

希尔排序

希尔排序(Shell Sort)是插入排序的一种。也称缩小增量排序,是直接插入排序算法的一种更高效的改进版本。希尔排序是非稳定排序算法。该方法因DL.Shell于1959年提出而得名。 希尔排序是把记录按下标的一定增量分组,对每组使用直接插入排序算法排序;随着增量逐渐减少,每组包含的关键词越来越多,当增量减至1时,整个文件恰被分成一组,算法便终止

先取一个小于n的整数d1作为第一个增量,把文件的全部记录分组。所有距离为d1的倍数的记录放在同一个组中。先在各组内进行直接插入排序;然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量 =1( < …<d2<d1),即所有记录放在同一组中进行直接插入排序为止。

比较相隔较远距离(称为增量)的数,使得数移动时能跨过多个元素,则进行一次比较就可能消除多个元素交换。D.L.shell于1959年在以他名字命名的排序算法中实现了这一思想。算法先将要排序的一组数按某个增量d分成若干组,每组中记录的下标相差d.对每组中全部元素进行排序,然后再用一个较小的增量对它进行,在每组中再进行排序。当增量减到1时,整个要排序的数被分成一组,排序完成。

一般的初次取序列的一半为增量,以后每次减半,直到增量为1。

这里上一个图 shell

时间复杂度:

O(N^(3/2)) ~ O(N^2)

空间复杂度依然同直接插入排序,只需要一个辅助空间。

稳定性:不稳定的排序算法

 

本文固定链接: http://zmrlinux.com/2015/12/20/%e6%95%b0%e6%8d%ae%e7%bb%93%e6%9e%84%e5%b0%8f%e7%bb%93%ef%bc%88%e4%b9%9d%ef%bc%89%e6%8e%92%e5%ba%8f%e7%ae%97%e6%b3%95%e5%a4%a7%e6%9d%82%e7%83%a9/ | Kernel & Me

该日志由 root 于2015年12月20日发表在 数据结构&&算法 分类下, 你可以发表评论,并在保留原文地址及作者的情况下引用到你的网站或博客。
原创文章转载请注明: 数据结构小结(九)排序算法大杂烩 | Kernel & Me